Announcements

- No quiz this reekerid
- Reply to my email with your mock exam and answer key. (No later than Monday)

Also specify if you would
like me to match you. (I will do the matching. on Thesclay)

- Next week (RRR) my section times (1-3 PM PT) will be converted to O H
The usual o. 4 will still take place
(\#)

$$
\begin{aligned}
& S_{0} \int_{a}^{b} f(t) g^{\prime}(t) d t \text { also gives fhe desinecel angsuer. } \\
& 220 f^{5} 0 \\
& f^{\prime \prime}(b) g(b)-f(a) g(a)=\int_{a}^{b} \frac{d}{d t}(f(t) g(t)) d t \\
& \left.=\int_{a}^{b} f^{\prime}(t) g(t)+f(t) g^{\prime}(t)\right) d t \\
& =\int_{a}^{b} f^{\prime}(t) g(t) d t+\int_{a}^{b} f(t) g^{\prime}(t) d t
\end{aligned}
$$

\#2. Analogy: If yon take $y \div f(x)$ and look@ $y=f(x-4)$
this moves the pricture to the right by 4
"the positive x-direction"
Similarly, $r=f(\theta)$ to $r=f(\theta-\pi / 3)$ pos. θ
moves the procure in the counterclockwne reties. dir. by $\pi / 3$

1. Note: This is not a mere reparametrizaztion.

$$
\begin{array}{ll}
r=f(\theta) & r(\theta-\pi / 3) \\
\text { means } & \text { means } \\
x=f(\theta) \cos \theta & x=f(\theta-\pi / 3) \cos \theta \\
y=f(\theta) \sin \theta & y=f(\theta-\pi / 3) \sin \theta
\end{array}
$$

\#3)

First comment:
The answer must be a multiple of π
even.mult of π
(r, θ) and $(r, \partial+2 \pi)$ are the sane point
(r, ∂) and $(-r, \partial+\pi)$ foo! in the ry-plane

\#5)

\#6)

but. $\overrightarrow{A B}=\overrightarrow{D C}$; in particular

$$
=\stackrel{\rightharpoonup}{A B} \times \stackrel{\rightharpoonup}{A D}
$$

parallel so cross prod
is 0.

You ran definitely ob 7.8 joist by setting up systems of equations and trying to solve, but here
\#1) ave conceptual sans of a pproch ing then:
No $b / c \quad\langle 1,1,-1\rangle$ is not perpendicular to $\langle 2,1,3\rangle$.check in) dot product)
\# 8)
solutions formic line
 parallel to $\langle 2,1,3\rangle$

